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ABSTRACT I construct a canonical basis in the tensor
product of a simple integrable highest weight module with a
simple integrable lowest weight module of a quantized envel-
oping algebra. This basis is simultaneously compatible with
many submodules of the tensor product. As an application, I
obtain a construction of a canonical basis of (a modified form
of) the quantized enveloping algebra.

Section 1: Notations. Let Y be a free abelian group of finite
type and let X = Hom(Y, Z). I assume that we are given
linearly independent subsets I C Y, I' C X in bijection i i'
such that (i'(j))jj,, is a generalized Cartan matrix, which for
simplicity is assumed to be symmetric (although the results
hold without this assumption). Let U be the Hopf algebra
over Q(v) (v is an indeterminate) attached by Drinfeld (1) and
Jimbo to these data; this is a quantum version ofthe universal
enveloping algebra ofthe Lie algebra overQ attached by Kac
and Moody to the same data. The standard generators are Ej,
Fj (i E I) and Ky (y E Y); the relations are KyE, = vi (Y)EiKy;
KyF, = v-i'(Y)FjKy; EFj - FjEE = 6,(Ki - K_*)/(v - v-l);
KyKyt = Ky+y'; and the v-analogs of the Serre relations. The
comultiplication is given by A(E,) = E, 0 1 + Ki 0 Ei; A(F,)
= 1 0 F, + F, 0 K_,; A(Ky) = Ky 0 Ky. Let U+ (resp. U-) be
the subalgebra ofU generated by the Ej (resp. by the F.). For
any vE N', let U+ (resp. U-) be the subspace ofU+ (resp. U-)
spanned by words in the Ei (resp. F.) in which Ej (resp. Fj)
occurs V(j) times for eachj. Then U+ = EDU+, U- = DIUv-.
Let X+ = {x E Xlx(i) E N for all i}. For any x E X+, let (Vx,
{x) be a simple (integrable) U-module with a given generating
vector { such that Fiex = 0, Kyfx = v-x(y){x for all i, y; let
(Ax, 71x) be a simple (integrable) U-module with a given
generating vector 71x such that Ei7ix = 0, Kyqx = vx(Y)71x for
all i, y. A canonical basis B + of U+ with very favorable
properties is described in ref. 2 for types ADE, and a general
definition has been given in refs. 3 and 4. Here I shall use the
definition in ref. 3. Let B - be the analogous basis of U-. For
anyx E X+, letB={b E B +Ibex#O}and Bx = lb E Bj-bqx
# 0}. Then b -- bx (resp. b 1-- bqx) defines a bijection of Bx+
(resp. Bx-) onto a basis R+ of Vx (resp. onto a basis Oa% of Ax);
these are the canonical bases of V1, Ax. Let A = Z[v, v-1].
Then U has a natural A-form UA (with divided powers).
Moreover, Vx, Ax have natural A-lattices VX,A, Ax,A, gener-
ated by a+, %x, respectively; these lattices are UA-stable.
Let Tx (resp. -ex) be the Z[v-1]-submodule of Vx (resp. Ax)
generated by a+ (resp. g.x-)

Section 2. The main result of this paper is the construction
of a canonical basis of a tensor product Vx 0 A, (where x, z
E X+). This basis has a remarkable stability property that
makes it simultaneously compatible with many natural sub-
spaces of the tensor product. As an application, I construct
a canonical basis of a (modified form of) U, in which the
structure constants are in A and are (conjecturally) in N[v,
v-l].

Section 3: The quasi-R-matrix. Let -:U -+ U be the (invo-
lutive) Q-algebra homomorphism defined by

Pi= Ei, Pi= Fi, Ky = K_y, v = v-l

Let -:U 0)U U 09 U be the Q-algebra homomorphism
defined by - 0 -. Let 1:U -+ U 0 U be the Q(v)-algebra
homomorphism defined by A(u)=Ani) for all u E U.
PROPOSITION 1. There exist uniquely defined elements 0v

E U- 0 U' (for v E NI) such that 0o = 1 0 1 and 0 = Xv0v
satisfies A(u)@ = 01(u) for all u E U (equality in a suitable
completion of U 0 U). We have 0i = B0 = 1 0 1. The
existence of e is similar to the existence (1, 5) of Dsinfeld's
universal R-matrix of U. In fact, one shows that 0 is obtained
from Drinfeld's element by removing the Cartan part and by
transposing the factors. (For this reason, 0 is called the
quasi-R-matrix.) The uniqueness of 0 is easier than that of
the Drinfeld element (which requires additional properties).
The last assertion of the proposition follows from uniqueness.
For example, in type Al, with I = {i} (with notation of ref.

2),
0 = X (-l)kV-k(k-1)12(v -V1)(V2 - v-2)

k20
*v*(v--kF~k) X E(k)

Section 4. Let x, z E X+ and regard V, 0 A, as a U-module,
via A. We denote by a.,,:U -+ V x0 A jthe (suriective) linear
map given by u~-u(00 q1)
Let -:V V (resp. -:Az- Az) be the unique Q-linearmap

such that ufi, = iuX (resp. u71 = ihz) for all u E U. Let -:V
0A,-* Vx A, be definedby -0 -.Wecanregard0 as a
Q(v)-linear endomorphism of V, 0 A, (using the U 0 U-mod-
ule structure); any given vector is annihilated by all but
finitely many 0,. Let T:Vx0 A, -- Vx0 A, be the Q-linear
map given by T(r) = 0(r). I state some properties of I.

(i) a., z(l) = 'I(ax,z(u)) for all u E U. This follows from the
definition of 0 and the fact that {x 0 q, is fixed both by 0
and -.

(ii) %I maps the A-lattice VX,A &A Az,A into itself.
Indeed, any element in that lattice is of the form ax,z(u) for

some u E UA. Its image under T is ax,z(-u); this is again in the
lattice since UA is stable under -.

If b E B + (resp. b E BE), we set IbI = Xiv(i) where v E NI
is such that b E U+ (resp. b E U-).

If b E Bx+ and b' E B-, then bfx 0) b',q, is fixed by -; using
this and the general form of 0, we see the following.

(iii) A4(bfx 0 b'l7z) = bfx 0 b'?z + Xb1,bc(b, b', bi, b')blfx
0 b'1z sum over all b1 E Bx+ and b' E B- such that 1bil < Ibi
and Ibil < Ib'I; the coefficients c(b, b', bi, bj) are in Q(v).
Combining properties ii and iii we obtain the following.

(iv) The coefficients c(b, b', bl, bj) in property iii are in A.
From the definitions and from the last assertion of Proposi-
tion I we deduce property v.

(v) %2 = 1 and 4I is antilinear with respect to v -- v1.
Let Txz = 5x0ztv-x]EZ be the Z[v-1]-submodule of Vx 0

Az generated by the basis x 0 HzA.
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THEOREM 1. (i) The natural map

X.ST,z n wax,z) -3 Sx,z/v-lTXZ
is an isomorphism of abelian groups.

(ii) For any (b, b') E Bx+ x B-, there is a unique element
(b b')x,z E Tx z such that I((b b')X,z) = (b b')x,, and
IT((b b')%,z) = u(bfx 09 b' 1z).

(iii) The element (b b')x,z in assertion ii is equal to bx
b',qz plus a Z[v-1]-linear combination of elements blat 0
b',z, with b, E B+ and bN E B- such that Ibil < jbj and Ibil
< b'I.

(iv) The elements (b b')x,z with b, b' as above form a

Q(v)-basis of Vx 0 Az, an A-basis of Vx,A OA AZ,A, a
Z[v'1]-basis of 5x,z and a Z-basis of Txz/v-l-xtz.

This follows formally from properties i-v of Section 4, just
as in ref. 2 (sections 7.10 and 7.11). The basis {(b b')X,JI(b,
b') E B,+ x B;-} is said to be the canonical basis of V, 0 Az.

Section 5. For example, for any b E Bx+ and b' E B-, the
elements be. &lz and {0 b'uzbelong to the canonical basis

of Vx 0 Az, since they are fixed both by 0 and by -.

Section 6. Consider the example oftype Al, with I = {i}. We
set x(i) = a E N, z(i) = c E N. The canonical basis of Vx 0
Az consists of the vectors

8nm = z vs(n-s-a)[c+ S m]E(n.s) F0 ms)n
sO;szn;sSm s

I

for various n E [0, a], m E [0, c] such that n - m s a - c,
and of the vectors

8n,m vS(M-s-C)[a + s n]E(-s) Fms)X
s:20;s:5n;s:5m S

Z

for various n E [0, a], m E [0, c] such that n - m 2 a - c

(in the notation of ref. 2); the two definitions of en,m coincide
when n - m = a - c.

For any k, the subspace of Vx 0 Az spanned by the vectors
en,m with min(n - a, m - c) c k is a U-submodule of Vx 0
Az. These subspaces form a composition series ofthe U-mod-
ule Vx 0 Az that is compatible with the canonical basis.

Section 7. The following three lemmas are proved using the
definition of "crystal" lattices and bases at v = oo and their
behavior under tensor product (see ref. 3, especially theorem
1 on p. 475). One first proves them with Z[v-1] replaced by
the ring of rational functions in v that are regular at ao.
LEMMA 1. Let x, t E X+ and let ,t:V+t-- V. Vt be the

unique U-linear map such that yx,t(fx+t) = f)0ft. Note that
B+ C B+

(i) For any b E B+, we have yxtoofx+t) - b 04 t E V1'-

(ii) For any /3 E a+t 99+ we have 'YX,t(13) - 131 0 12 E
V-'.T 0Z1-ij+tfor some (1 E '+ and some P2 E a' - {I}.
LEMMA 2. Let t, z E X+ and let yt.Z:At+z -- At 0 A. be the

unique U-linear map such that ytz(,t+z) = at iz. Note that
Bz- C B-t+z,

(i) For any b E B-, we have vt z(bm +z) - rqt 0 bqz E v 41

(ii) For any P E tz - a- we have yt.Z(p) p0 E

vEt 0zLV-1]2for some f13 E t - {at} and some 12 E %Z .

LEMMA 3. Let t E X+ and let 6t:Vt 0 At - Q(v) be the

unique U-linear map such that Bt(t 0 m) = 1. [Regard Q(v)
as a U-module with Ei, Fi acting as 0 and Ky acting as 1.] If
(13, 1') E at+ 0 a is not equal to (4t, int, then 8t(13 3') E
v'1Z[v 1].

Section 8. Given x, t, z E X+, we define a U-linear map X
Tx+t,+zlxz: Vx+t0 At+z -+ Vx 0 Az as the composition of yx,t

A'z:Vx+ 0 At+z * V, 0 V, X A, 0 A, with 1 0 8, 0 1:Vx
V. A. A- -- V- A--
We have the following stability property.
THEOREM 2. (i) If(b, b') E Bx+ x B-, then r((b b')x+tt+z)

= (b b')xz.

(ii) If (b, b') E B+ t x B- - B, X B-, then T((b C
b')x+tt+z) = 0.
The map V.+t 0 At+,z -* V.+t At+z defined like T in

Section 4 (for x + t, t + z instead of x, z) will be denoted by
I". From the definitions we have that ax,z = Tax+t,t+z. Using
property i of Section 4 twice we deduce that WztxX+t,t+z(u) =
'Pa.,z(u) = axz(u) and TT'ax+t,t+z(u) = raX+tt+Zu-) = axz(u)
for all u E U. Thus, ITax+t,t+z = T*Iax+t,t+z; since ax+tt+z is
suijective, it follows that

(iii) TT = TT .

Under the assumptions of assertion i, the element T((b C
b')x+tt+z) belongs to bfx 0 b'qz + v-l2xz (see Lemmas 1-3)
and is fixed byT (see equation iii); by assertion ii of Theorem
1, it is equal to (b C b')x,z. Under the assumptions ofassertion
ii, the element r((b C b)x+tt+z) belongs to v-l2x,, (see
Lemmas 1-3) and is fixed by I (see equation iii); hence it is
zero, by assertion i of Theorem 1. This proves Theorem 2.

Section 9. In the U-module Vx 0 Az we may consider the
family of submodules consisting of the kernels of the suiJec-
tive homomorphisms Tx,z,x ,z for various x', z' inX+ such that
x - x' = z - z' E X+. From the previous theorem we see that
the canonical basis of Vx 0 A, is simultaneously compatible
with all these subspaces (generalizng the example in Section
6). One can conjecture that (in the case where the Cartan
matrix is positive definite), there exists a composition series
ofthe U-module Vx0 Az all ofwhose members are compatible
with the canonical basis.

Section 10. For any A E X we denote

U(A) = U/ E U(Ky - vA(Y))

For any x, z E X+ such that A = z - x, the linear map ax,z:U
-- VX 0 Az (see Section 4) factors through a linear map
ax,z:U(A) -) Vx0 Az. Let Ixz C U(A) be the kernel of ax,z. The
next result follows easily from Theorem 2.
THEOREM 3. (i) Given any (b, b') E B+ x B-, there is a

unique element b CA b' E U(A) such that &,(,zb *A b') = (b
C b'),,,zfor any x, z in X+ such that b E B+, b' E B;, z -
x = A. If either b f B+ orb'W B-, then &,[,z(b CA b') = 0.
The element b CA b' is fixed by the map -:U(A) -- U(A)
induced by :U-- U.

(ii) The elements b >A b' for (b, b') E B+ x B-, form a
Q(v)-basis of U(A). This basis is simultaneously compatible
with each of the subspaces Ix,z defined in Section 10.

Section 11. For any p E X we denote ULNA = {u E UIKyu =
VP(Y)UKy for ally E Y}; thus U = (DpUp,,. Let ITA:U -* U(A) be
the natural projection. There is a natural structure of asso-
ciative algebra (without 1) on U = @AExU(A) inherited from
that of U. It is defined by the following requirement: for any
u E U[pJ, u' E Utp ] and any A, A' E X, the product 1rA(u)TrA'(u')
is equal to irA'(uu') if A = A' + p' and is zero otherwise. The
elements irA(l) form a set oforthogonal idempotents. Clearly,
the elements b CA b' for (b, b') E B+ x B- and A E X form
a Q(v)-basis of U.; I call it the canonical basis of U. It is easy
to see that theA-submodule UA spanned by these elements is an
A-subalgebra (without 1) of U.
Now U also inherits from U a structure close to a coalgebra

structure; namely, for any three elements A, A', A' E X such
that A = A' + A", there is a unique Q(v)-linear map AA',Av:U(A)
-+ U(A') 0 U(A") such that for any u E U with A(u) = Vu' 0
UP, we have AA',A-(1A(u)) = iTrA(u') 0 IxT'u').
The structure constants (with respect to the canonical

basis) of this "comultiplication", as well as those of the
multiplication, belong to A.
One may conjecture that these structure constants are in

fact in N[v, v-1], generalizing the positivity property for
comultiplication and multiplication proved in ref. 4.

8178 Mathematics: Lusztig



Proc. Natl. Acad. Sci. USA 89 (1992) 8179

Section 12. In the remainder of this paper I assume that the
Cartan matrix is positive definite. Let U* = Hom(U, Q(v)) be
the dual space of U; we can regard U* as an associative
algebra with multiplication f, f' ~- ffi, where (ffi)(u) = (fX
f )(A(u)) for all u E U.

Given x, z E X+, the surjective map ax,z:U -- VxX Az (see
Section 4) induces by passage to dual an injective Q(v)-linear
map axz:(Vx®A* -* U*. Let U*(x, z) be its image. We have
U*(x, z) C U*(x + t, t + z) for any t E X+. One can check
that under the multiplication in U*, we have U*(x, z)U*(x', z')
C U*(x + x', z + z'). It follows that A = ,xZU*(x, z) is a
subalgebra (with 1) of U*, the quantum coordinate algebra.
Let (b, b') E B+ x B- and let A E X. We can choose x, z

in X+ such that b E Bx+, b' E Bz-,z x = A. Let g(b, b', x,
z) be the linear form on Vx® Az that takes value 1 at (b C b'X,z
and takes the value 0 on all other elements of the canonical
basis. Then ax,z(g(b, b', x, z)) E A is independent of the
choice ofx, z by the stability property (Theorem 2); we denote
it b OA b'. The following result is easily verified.
THEOREM 4. The elements b OA b'for various (b, b') E B+

x B- and A E X form a Q(v)-basis of A. This basis is
simultaneously compatible with each ofthe subspaces U*(x,
z).
There is a unique bilinear pairing (,):A x U -+ Q(v) such

that the following holds: iff E A and A E X satisfy fuKy) =
vA(Y)f(u) for all y E Y, then, for any u' E U and any 1A E X,
the value of (f, i,(u')) is equal toflu') for ,u = A and to zero,
for ,u # A.

It is easy to check that (b OA b', b1 OA, bM) is equal to 1 if
b = bl, b' = bM, A = Al and it is zero, otherwise.

Section 13: Connections with earlier work. The idea to
define the coordinate algebra (for v = 1) in terms of the
enveloping algebra goes back to ref. 6. The algebra U

appeared (for type A) in ref. 7, where a basis for it (presum-
ably the same as the one in assertion ii of Theorem 3) was
constructed by a quite different method; another approach to
this basis (for v = 1) was later found in ref. 8. A definition
(different from the one in Section 12) of the quantum coor-
dinate algebra A together with a basis of it was given in ref.
9. Note that the approach in ref. 9 does not yield the
compatibility ofthe basis with the various subspaces ofA and
does not yield a basis of 0. The possibility of describing the
coordinate algebra using tensor products, as in Section 12,
has been one of the ingredients in ref. 10; the maps Tx+t,+zxz
(see Section 8) appeared in no. 18 ofref. 10 in a closely related
context.
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